

GCE

Mathematics

Advanced GCE

Unit 4727: Further Pure Mathematics 3

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1 (i)	Integrating factor. $e^{\int x dx} = e^{\frac{1}{2}x^2}$	B1	For correct IF
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y \mathrm{e}^{\frac{1}{2}x^2} \right) = x \mathrm{e}^{x^2}$	M1	For $\frac{d}{dx}(y)$. their IF = $xe^{\frac{1}{2}x^2}$. their IF
	$\Rightarrow y e^{\frac{1}{2}x^2} = \frac{1}{2}e^{x^2} (+c)$	A1	For correct integration both sides
	$\Rightarrow y = e^{-\frac{1}{2}x^2} \left(\frac{1}{2} e^{x^2} + c \right) = \frac{1}{2} e^{\frac{1}{2}x^2} + c e^{-\frac{1}{2}x^2}$	A1 4	For correct solution AEF as $y = f(x)$
(ii)	$(0, 1) \Rightarrow c = \frac{1}{2}$ $\Rightarrow y = \frac{1}{2} \left(e^{\frac{1}{2}x^2} + e^{-\frac{1}{2}x^2} \right)$	M1 A1 2	For substituting (0, 1) into their GS, solving for <i>c</i> and obtaining a solution of the DE For correct solution AEF
	$\Rightarrow y - 2(c + c)$		Allow $y = \cosh\left(\frac{1}{2}x^2\right)$
		6	(-)
2 (i)	$\mathbf{n} = [2, 1, -3] \times [-1, 2, 4]$	M1	For using × of direction vectors
_ (-)	= [10, -5, 5] = k[2, -1, 1]	A1	For correct n
	$(1,3,4) \Rightarrow 2x - y + z = 3$	A1 3	For substituting (1, 3, 4)
			and obtaining AG (Verification only M0)
(ii)	METHOD 1	M1	For $21 - 3$ <i>OR</i> $[1, 3, 4] \cdot [2, -1, 1] - 21$
	distance = $\frac{21-3}{ \mathbf{n} } OR \frac{ [1,3,4]\cdot[2,-1,1]-21 }{ \mathbf{n} }$		$OR \mid ([1, 3, 4] - [a, b, c]) \cdot [2, -1, 1] \mid \text{ soi}$
	OR $\frac{ ([1, 3, 4] - [a, b, c]) \cdot [2, -1, 1] }{ \mathbf{n} }$ where (a, b, c) is on q	B1	For $ \mathbf{n} = \sqrt{6}$ soi
	$=\frac{18}{\sqrt{6}}=3\sqrt{6}$	A1 3	For correct distance AEF
	METHOD 2 $[1+2t, 3-t, 4+t]$ on q	M1	For forming and solving an equation in t
	$\Rightarrow 2(1+2t) - (3-t) + (4+t) = 21 \Rightarrow t = 3$	B1	For $ \mathbf{n} = \sqrt{6}$ soi
	\Rightarrow distance = $3 \mathbf{n} = 3\sqrt{6}$	A1	For correct distance AEF
	METHOD 3 As Method 2 to $t = 3 \implies (7, 0, 7)$ on q	M1*	For finding point where normal meets <i>q</i>
	distance from $(1, 3, 4)$	M1	For finding distance from (1, 3, 4)
	$= \sqrt{(7-1)^2 + (0-3)^2 + (7-4)^2} = \sqrt{54} = 3\sqrt{6}$	(*dep)	
	$= \sqrt{(/-1)^2 + (0-3)^2 + (/-4)^2} = \sqrt{54} = 3\sqrt{6}$	A1	For correct distance AEF
		6	
3 (i)	$\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$		z or $e^{i\theta}$ may be used throughout
	2. (B1	For correct expression for $\sin \theta$ soi
	$\sin^4 \theta = \frac{1}{16} \left(z^4 - 4z^2 + 6 - 4z^{-2} + z^{-4} \right)$	M1	For expanding $\left(e^{i\theta} - e^{-i\theta}\right)^4$ (with at least
	4		3 terms and 1 binomial coefficient)
	$\Rightarrow \sin^4 \theta = \frac{1}{16} (2\cos 4\theta - 8\cos 2\theta + 6)$	M1	For grouping terms and using multiple angles
	$\Rightarrow \sin^4 \theta = \frac{1}{8} (\cos 4\theta - 4\cos 2\theta + 3)$	A1 4	For answer obtained correctly AG
(ii)	$\mathbf{c}^{\frac{1}{6}\pi}$	M1	For integrating (i) to $A \sin 4\theta + B \sin 2\theta + C\theta$
	$\int_0^{\frac{1}{6}\pi} \sin^4 \theta d\theta = \frac{1}{8} \left[\frac{1}{4} \sin 4\theta - 2 \sin 2\theta + 3\theta \right]_0^{\frac{1}{6}\pi}$	A1	For correct integration
	$= \frac{1}{8} \left(\frac{1}{8} \sqrt{3} - \sqrt{3} + \frac{1}{2} \pi \right) = \frac{1}{64} \left(4\pi - 7\sqrt{3} \right)$	M1	For completing integration and substituting limits
		A1 4	For correct answer AEF (exact)
		8	

4 (0)				
4 (i)	EITHER $1 + \omega + \omega^2$	M1	•	For result shown by any correct method AG
	= sum of roots of $(z^3 - 1 = 0) = 0$	A1	2	
	$OR \omega^3 = 1 \Rightarrow (\omega - 1)(\omega^2 + \omega + 1) = 0$			
	$\Rightarrow 1 + \omega + \omega^2 = 0 \text{ (for } \omega \neq 1)$			
	OR sum of G.P.	-		
	$1 + \omega + \omega^2 = \frac{1 - \omega^3}{1 - \omega} \left(= \frac{0}{1 - \omega} \right) = 0$	-		
	OR shown on Argand diagram or explained in terms of vectors			
	OR	-		
	$1 + \operatorname{cis} \frac{2}{3} \pi + \operatorname{cis} \frac{4}{3} \pi = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i \right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) = 0$			
(ii)	Multiplication by $\omega \Rightarrow$ rotation through $\frac{2}{3}\pi$	В1		For correct interpretation of \times by ω
	,			(allow 120° and omission of, or error in, \circlearrowleft)
	$z_1 - z_3 = \overrightarrow{CA}$, $z_3 - z_2 = \overrightarrow{BC}$	B1		For identification of vectors soi (ignore direction errors)
	\overrightarrow{BC} rotates through $\frac{2}{3}\pi$ to direction of \overrightarrow{CA}	M1		For linking <i>BC</i> and <i>CA</i> by rotation of $\frac{2}{3}\pi$ <i>OR</i> ω
	$\triangle ABC$ has $BC = CA$, hence result	A1	4	For stating equal magnitudes \Rightarrow AG
(iii)	$(\mathbf{ii}) \Rightarrow z_1 + \omega z_2 - (1 + \omega)z_3 = 0$	M1		For using $1 + \omega + \omega^2 = 0$ in (ii)
	$1 + \omega + \omega^2 = 0 \Rightarrow z_1 + \omega z_2 + \omega^2 z_3 = 0$	A 1	2	For obtaining AG
		8		
5 (i)	Aux. equation $3m^2 + 5m - 2 (= 0)$	M1		For correct auxiliary equation seen and solution attempted
	$\Rightarrow m = \frac{1}{3}, -2$	A1		For correct roots
	CF $(y =) A e^{\frac{1}{3}x} + B e^{-2x}$	A1ν	'	For correct CF f.t. from <i>m</i> with 2 arbitrary constants
	PI $(y =) px + q \Rightarrow 5p - 2(px + q) = -2x + 13$	M1		For stating and substituting PI of correct form
	$\Rightarrow p=1, q=-4$	A1	A 1	For correct value of p , and of q
	GS $(y =) A e^{\frac{1}{3}x} + Be^{-2x} + x - 4$	B1v	7	For GS f.t. from their CF+PI with 2 arbitrary constants in CF and none in PI
(ii)	$\left(0, -\frac{7}{2}\right) \Rightarrow A + B = \frac{1}{2}$	M1		For substituting $\left(0, -\frac{7}{2}\right)$ in their GS
	$y' = \frac{1}{3}Ae^{\frac{1}{3}x} - 2Be^{-2x} + 1$, $(0, 0) \Rightarrow A - 6B = -3$	M1		and obtaining an equation in A and B For finding y' , substituting $(0,0)$ and obtaining an equation in A and B
		M1		For solving their 2 equations in A and B
	$\Rightarrow A = 0, B = \frac{1}{2}$	A1		For correct A and B CAO
	$\Rightarrow (y =) \frac{1}{2} e^{-2x} + x - 4$	В1ν	5	For correct solution f.t. with their A and B in their GS
(iii)	$x \text{ large} \Rightarrow (y =) x - 4$	B1v	1	For correct equation or function (allow ≈ and →) www f.t. from (ii) if valid
		1.	3	(ii) II Tuild

6 (i)	$a^4 = r^6 = e \implies a$ has order 4, a^2 has order 2	M1	For considering powers of <i>a</i>
	$\left(a^3\right)^4 = a^{12} = e \implies a^3 \text{ has order 4}$	A1 A1	For order of any one of a , a^2 , a^3 correct For all correct
	$\left(r^2\right)^3 = e \implies r^2 \text{ has order } 3$	B1 4	For order of r^2 correct
(ii)	G order 4 0 1 2 (4) Number of elements 1 3 (0)	M1	For top line in either table Allow inclusion of 4 and 6 respectively (and other orders if 0 appears below)
	H order 6 Order of element 1 2 3 (6) Number of elements 1 3 2 (0)	A1 A1	For order 4 table For order 6 table
	G and H are the only non-cyclic groups of order which divides 12	B1	For stating that only <i>G</i> and <i>H</i> need be considered AEF
	Q has 1 element of order 2, G and H have 3, so no non-cyclic subgroups in Q	B1 5	
		9	
7 (i)	$[1, 1, -2] \times [1, -1, 3] = (\pm)[1, -5, -2]$ $[1, -1, 3] \times [1, 5, -12] = (\pm)[-3, 15, 6]$	M1 A1 M1	For using × of direction vectors For correct direction For using × of direction vectors
	$[-3, 15, 6] = k[1, -5, -2] \Rightarrow \text{parallel}$	A1 A1 5	For correct direction
(ii)	Line of intersection is parallel to <i>l</i> and <i>m</i>	B1 1	
(iii)	METHOD 1		
	$\begin{cases} x + y - 2z = 5 \\ x - y + 3z = 6 \end{cases}$ e.g. $z = 0 \implies \left(\frac{11}{2}, -\frac{1}{2}, 0\right)$ on l	M1 A1	For attempt to find points on 2 lines For a correct point on one line
	$\begin{cases} x - y + 3z = 6 \\ x + 5y - 12z = 12 \end{cases}$ e.g. $z = 0 \implies (7, 1, 0)$ on m	A1	For a correct point on another line
	$\begin{cases} x + y - 2z = 5 \\ x + 5y - 12z = 12 \end{cases}$ e.g. $z = 0 \implies \left(\frac{13}{4}, \frac{7}{4}, 0\right)$ on l_3		
	Different points ⇒ no common line of intersection	A1 4	For correct answer
	METHOD 2 x + y - 2z = 5 $x - y + 3z = 6$ e.g. $\Rightarrow z = 11 - 2x$, $y = 27 - 5x$	M1	For finding (e.g.) y and z in terms of x OR eliminating one variable
	LHS of eqn 3 = $x + (135 - 25x) - (132 - 24x) = 3 \neq 12$	A1 A1	For correct expressions <i>OR</i> equations For obtaining a contradiction from 3rd equation
	⇒ no common line of intersection	A1	For correct answer
	METHOD 3		
	LHS $\Pi_3 = 3\Pi_1 - 2\Pi_2$	M2	For attempt to link 3 equations
	RHS $3 \times 5 - 2 \times 6 = 3 \neq 12$	A 1	For obtaining a contradiction
	⇒ no common line of intersection	A1	For correct answer
	SR Variations on all methods may gain full credit		SR f.t. may be allowed from relevant working
		10	

8 (i)	((a,b)*(c,d))*(e,f) = (ac,ad+b)*(e,f)	M1	For 3 distinct elements bracketed and attempt to expand
	=(ace, acf + ad + b)	A1	For correct expression
	(a,b)*((c,d)*(e,f)) = (a,b)*(ce,cf+d)		
	=(ace, acf + ad + b)	A1 3	For correct expression again
(ii)	(a,b)*(1,1) = (a,a+b), (1,1)*(a,b) = (a,b+1)	M1	For combining both ways round
	$a+b=b+1 \implies a=1$	M1	For equating components
	\Rightarrow (1, b) \forall b	. 1 . 2	(allow from incorrect pairs)
(:::)	000 (100)	A1 3	For cities almost on LUS
(iii)	(mp, mq + n) OR (pm, pn + q) = (1, 0)	M1	For either element on LHS
	$\Rightarrow (p,q) = \left(\frac{1}{m}, -\frac{n}{m}\right)$	A1 2	For correct inverse
(iv)	$(a,b)*(a,b) = (a^2, ab+b) = (1,0)$	M1	For attained to find salf incomes
	$OR(a,b) = \left(\frac{1}{a}, -\frac{b}{a}\right) \implies a^2 = 1, \ ab = -b$	1 VI I	For attempt to find self-inverses
	\Rightarrow self-inverse elements (1, 0) and (-1, b) \forall b	B1 A1	For $(1, 0)$. For $(-1, b)$ AEF
()	(0) 1	<u>3</u>	F = 444 = 1 = 1 = 1 = 14 = 14 = 1 = 1 = 1
(v)	$(0, y)$ has no inverse for any $y \Rightarrow$ not a group	B1 1	For stating any one element with no inverse. Allow $x \neq 0$ required, provided reference to
			Allow $x \neq 0$ required, provided reference to inverse is made
			"Some elements have no inverse" B0
		12	20
		1-4	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

